

ADVANCED GCE MATHEMATICS

Probability & Statistics 4

4735

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required:

• Scientific or graphical calculator

Thursday 24 June 2010 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of **4** pages. Any blank pages are indicated.

- 1 For the variables A and B, it is given that Var(A) = 9, Var(B) = 6 and Var(2A 3B) = 18.
 - (i) Find $\operatorname{Cov}(A, B)$. [3]

[1]

[3]

[5]

[3]

- (ii) State with a reason whether A and B are independent.
- 2 The probability generating function of the discrete random variable X is $\frac{e^{4t^2}}{e^4}$. Find
 - (i) E(X),

(ii)
$$P(X = 2)$$
. [3]

- 3 X_1 and X_2 are continuous random variables. Random samples of 5 observations of X_1 and 6 observations of X_2 are taken. No two observations are equal. The 11 observations are ranked, lowest first, and the sum of the ranks of the observations of X_1 is denoted by R.
 - (i) Assuming that all rankings are equally likely, show that $P(R \le 17) = \frac{2}{231}$. [5]

The marks of 5 randomly chosen students from School A and 6 randomly chosen students from School B, who took the same examination, achieving different marks, were ranked. The rankings are shown in the table.

Rank	1	2	3	4	5	6	7	8	9	10	11
School	Α	Α	Α	В	Α	Α	В	В	В	В	В

- (ii) For a Wilcoxon rank-sum test, obtain the exact smallest significance level for which there is evidence of a difference in performance at the two schools. [2]
- 4 The moment generating function of a continuous random variable *Y*, which has a χ^2 distribution with *n* degrees of freedom, is $(1 2t)^{-\frac{1}{2}n}$, where $0 \le t < \frac{1}{2}$.
 - (i) Find E(Y) and Var(Y).

For the case n = 1, the sum of 60 independent observations of Y is denoted by S.

- (ii) Write down the moment generating function of *S* and hence identify the distribution of *S*. [2]
- (iii) Use a normal approximation to estimate $P(S \ge 70)$.
- 5 In order to test whether the median salary of employees in a certain industry who had worked for three years was £19500, the salaries x, in thousands of pounds, of 50 randomly chosen employees were obtained.
 - (i) The values |x 19.5| were calculated and ranked. No two values of x were identical and none was equal to 19.5. The sum of the ranks corresponding to positive values of (x 19.5) was 867. Stating a required assumption, carry out a suitable test at the 5% significance level. [10]
 - (ii) If the assumption you stated in part (i) does not hold, what test could have been used? [1]

6 Nuts and raisins occur in randomly chosen squares of a particular brand of chocolate. The numbers of nuts and raisins are denoted by N and R respectively and the joint probability distribution of N and R is given by

$$f(n, r) = \begin{cases} c(n+2r) & n = 0, 1, 2 \text{ and } r = 0, 1, 2, \\ 0 & \text{otherwise,} \end{cases}$$

where c is a constant.

- (i) Find the value of c. [3]
- (ii) Find the probability that there is exactly one nut in a randomly chosen square. [2]
- (iii) Find the probability that the total number of nuts and raisins in a randomly chosen square is more than 2. [2]
- (iv) For squares in which there are 2 raisins, find the mean number of nuts. [4]
- (v) Determine whether N and R are independent.
- 7 The continuous random variable *X* has probability density function given by

$$f(x) = \begin{cases} \frac{x}{2\theta^2} & 0 \le x \le 2\theta, \\ 0 & \text{otherwise,} \end{cases}$$

where θ is an unknown positive constant.

- (i) Find $E(X^n)$, where $n \neq -2$, and hence write down the value of E(X). [3]
- (ii) Find
 - (a) Var(X),
 - (**b**) $Var(X^2)$.

[4]

[2]

- (iii) Find $E(X_1 + X_2 + X_3)$ and $E(X_1^2 + X_2^2 + X_3^2)$, where X_1, X_2 and X_3 are independent observations of X. Hence construct unbiased estimators, T_1 and T_2 , of θ and Var(X) respectively, which are based on X_1, X_2 and X_3 . [6]
- (iv) Find $\operatorname{Var}(T_2)$. [2]
- 8 For the events *L* and *M*, P(L | M) = 0.2, P(M | L) = 0.4 and P(M) = 0.6.
 - (i) Find P(L) and $P(L' \cup M')$. [3]
 - (ii) Given that, for the event N, $P(N \mid (L \cap M)) = 0.3$, find $P(L' \cup M' \cup N')$. [3]

1(i)	Var(2A - 3B) = 4Var(A) + 9Var(B) - 12Cov(A,B)	M1	Correct formula. Allow one
	\rightarrow 18 = 36 + 54 - 12Cov(A B)	Δ1	Substitute relevant values
	$\Rightarrow \operatorname{Cov}(A, B) = 6$	A1 3	CAO
(ii)	Since $Cov(A, B) \neq 0$. A and B are not independent	B1 ft	Must have a reason, ft
()		1	Cov≠ 0
		(4)	
2(i)	$G'(t) = 8te^{4t^2}/e^4$	M1A1	M1 for ct^2/e^4
	E(X) = G'(1)	Δ1	
	= 8	3	
(ii)	EITHER: $G(t) = e^{-4}(1 + 4t^2 +)$	M1A1	Expand in powers of t
	$P(X=2) = coefficient of t^2 = 4e^{-4} or 4/e^4 or 0.0733$	A1 3	
	OR G''(t) = $(8+64t^2)e^{4t^2-4}$	M1A1	M1 for reasonable attempt
	$P(X=2) = \frac{1}{2}G''(0) = 4e^{-4} \text{ or } 4/e^{4} \text{ or } 0.0733$	A1	at M"(<i>t</i>)
		(6)	
3(i)	Number of different rankings ¹¹ C ₅	M1	Number of selections of 5
	100		from 11
	=462	A1	
	For $R \le 17$: $1+2+3+4+5 = 15$ 1+2+3+4+6=16		
	1+2+3+5+6=17		
	1+2+3+4+7=17	B2	B1 for 2 or 3 correct
	$P(R \le 17) = 4/462 = 2/231$ AG	A1 5	
(ii)	<i>W</i> = 17	M1	
	$P(W \le 17) = \frac{2}{231}$		
	Smallest SL = $\frac{400}{231}$ %	A1ft 2	Allow $\frac{4}{231}$; ft $\frac{2}{231}$, but must
		(7)	be exact
4(i)	EITHER: (a) $M'(t) = n(1 - 2t)^{-\frac{1}{2}n - 1}$	M1 A1	Correct form for M1
	E(Y) = M'(0) = n	A1	
	$M''(t) = n(n+2)(1-2t)^{2n-2}$		Ft similar M'(t)
	Val(Y) = 1(1+2) = 11 = 211 $OP: M(t) = 1 + pt + \frac{1}{2}p(p+2)t^2$		M(0) = (M(0))
	F(N) = n		
	$V_{ar}(Y) = n(n+2) - n^2 = 2n$	Δ1 5	
(ii)	$MGF = (1 - 2t)^{-30}$	B1	From $[(1 - 2t)^{-1/2}]^{60}$
,	χ^2 distribution with 60 d.f.	B1 2	
(iii)	E(S) = 60, Var(S) = 120	B1ft	From (i)
	Using CLT, Probability =1 – $\Phi(10/\sqrt{120})$	M1	Correct tail: allow cc
	= 0.181	A1 3	
		(10)	

5(i)	Assumes salaries symmetrically	B1	In context	
	H ₀ : m (edian) = 19.5, H ₁ : m (edian)≠ 19.5	B1	For both : not μ : accept words	
	<i>P</i> = 867 (or 408)			
	Using normal approximation	M1		
	$\mu = \frac{7}{4} \times 50 \times 51 (= 637.5)$ $\sigma^2 = 50 \times 51 \times 101/24 (= 10731.25)$	Δ1		
	$z = (a - 637.5)/\sqrt{10731.25}$	M1	a=866.5, 867, 867.5 (or 408.5,	
	Use <i>a</i> = 866.5	A1	408,	
	= 2.211, or 2.215 or 2.220 (– from 408)	A1	407.5)	
	There is sufficient evidence at the 5% SI		Or <i>p</i> -value rounding to 0.026 or	
	that the median salary differs from £19	A1 ft	0.027	
	500	10	Compare with 0.05 or equivalent	
/!!\	Lise sign test when salary distribution is	R1 1	It z Or find critical region	
(11)	skewed			
		(11)		
6(i)	N 0 1 2	B1		
	0 0 c 2c	M1	Calculate 9 probs in terms of <i>c</i>	
	R 1 2c 3c 4c			
	2 40 50 60 Total 27c = 1			
	$c = \frac{1}{27}$	A1		
		3		
(11)	9C/27C	M1		
	3	2		
(iii)	P(N + R > 2)	 M1		
	$= 15c/27c = \frac{5}{9}$	A1 ft	AEF; ft <i>c</i>	
		2		
(1)				
(17)	$F(K=2) = \frac{12}{27}$	M1	Using conditional probabilities	
	$P(N \mid R=2): p_0 = \frac{1}{15}, p_1 = \frac{1}{3}, p_2 = \frac{1}{5}$	A1 ft A1 ft	One value; ft values in (i)	
	$E(N R=2) = 1 \times \frac{1}{3} + 2 \times \frac{2}{5}$			
	$=\frac{17}{15}$	A1	Or 1.13	
		-+		
(v)	Eg P(N=0 and R=0)=0	M1	Or from conditional probs	
	P(<i>N</i> =0)×P(<i>R</i> =0) = $\frac{6}{27} \times \frac{3}{27} \neq 0$		M0 from $N=1$ with $R=1$ or 2	
	So <i>N</i> and <i>R</i> are not independent	A1	All correct	
		2		
		(13)		

7(i)	$\int_{0}^{2\theta} \frac{x^{n+1}}{2\theta^2} dx = \left[\frac{x^{n+2}}{2(n+2)\theta^2}\right]$	M1		Correct integral
	$= 2^{n+1}\theta^n/(n+2)$	A1		AEF
	$E(X) = 4\theta/3$	B1 ft	3	B0 if not 'deduced'
(ii)	$Var(X) = 2\theta^{2} - (4\theta/3)^{2} = 2\theta^{2}/9$ $Var(X^{2}) = E(X^{4}) - (E(X))^{2}$ $= 16\theta^{4}/3 - 4\theta^{4} = 4\theta^{4}/3$	M1A1ft M1A1ft	4	ft (i) with no <i>n</i>
(iii)	$E(\sum X_i) = 3 \times 4\theta/3$ = 4\theta $T_1 = \frac{1}{4} \sum X_i$ $E(\sum X_i^2) = 3 \times 2\theta^2$ = 6\theta^2 $T_2 = (\sum X_i^2)/27$	M1 A1 ft A1 ft M1 A1 ft A1 ft 	6	ft with no <i>n</i> ft with no <i>n</i> or θ ft with no <i>n</i> or θ ft with no <i>n</i> or θ
(iv)	Var $(T_2) = 1/27^2 \times 3 \times Var(X^2)$ = $4\theta^4/729$	M1 A1 (15)	2	
				CAO
8(i)	$P(L \cap M) = P(L M)P(M) = 0.12 \text{ and}$ $P(L) = P(M \cap L) / P(M L) = 0.12/0.4 = 0.3$ P(L' = M(L) - P[(L - M)']	A1	М1	
	$P(L' \cup M') = P[(L \cap M)]$ = 1-P(L \cap M) = 1 - 0.2 × 0.6 = 0.88	B1	3	
(ii)	$P(N L \cap M) = 0.3$ $\Rightarrow P(N \cap L \cap M) = 0.3 \times 0.12$ = 0.036 $P(L' \cup M' \cup N') = 1 - 0.036 = 0.964$	M1 A1 A1	3 [6]	